March 2, 2011

Remote Observing with the FAST Telescope

Ming Zhu (on behalf of the FAST team) National Astronomical Observatories Chinese Academy of Sciences

Aerial View FAST (model)

Site in Guizhou

Location: N25.647222° E106.85583°

Site: the Karst region in south Guizhou Province

Quick Bird Fly Oct. 6, 2005

3. technology

Site Active Reflector Feed support Measurements Receivers

Observatory

~2400 winches ~4600 panels

daptive cable-mesh

Two realizations of main reflector Solid panel-actuator

Feed support

mechanical-electronic-optical integrated design

- Focal cap diameter 206m
- Cabin in total ~30t
- Load on lower plate ~3t
- Maximum tracking 11.6mm/s
- Slewing 400mm/s
- Position error <10mm</p>
- Pointing accuracy 8"

Three main parts of cabin suspension

- Cable network first adjustable system
- Stewart secondary adjustable system
- Close loop control

2. General Technical Specification

Spherical reflector: Radius \sim 300m, Aperture \sim 500m, Opening angle 110~120° Illuminated aperture: D_{ill}=300m Focal ratio: f/D = 0.467Sky coverage: zenith angle 40° (up to 60° with efficiency loss) tracking hours 0~6h Frequency: 70M ~ 3 GHz (up to 8GHz in future upgrading) Sensitivity (L-Band) : A/T~2000, T~20 K Resolution (L-Band) : 2.9' Multi-beam (L-Band): 19, beam number of future FPA >100 Slewing: <10min Pointing accuracy: 8"

Declination

Right Ascension

Frequency range

9 sets of FAST receivers NAOC - JBO

No	Band (GHz)	Beams	Pol.	Cryo Tsys(K)	Science
1	0.07 - 0.14	1	RCP LCP	no 1000	High-z HI(EoR),PSR, VLBI, Lines
2	0.14 - 0.28	1	RCP LCP	no 400	High-z HI(EoR),PSR, VLBI, Lines
3	0.28 - 0.56	1 or multi	RCP LCP	no 150	High-z HI(EoR),PSR, VLBI, Lines Space weather, Low frequency DSN
4	0.56 - 1.02	1 or multi	RCP LCP	yes 60	High-z HI(EoR),PSR, VLBI, Lines Exo-planet science
5	0.320 - 0.334	1	RCP LCP	no 200	HI,PSR,VLBI Early sciences
6	0.55 – 0.64	1	RCP LCP	yes 60	HI,PSR,VLBI Early Sciences
7	1.15 – 1.72	1 L wide	RCP LCP	yes 25	HI,PSR,VLBI,SETI,Lines
8	1.23 – 1.53	19 Lnarrow multibeam	RCP LCP	yes 25	HI and PSR survey, Transients
9	2.00 - 3.00	1	RCP/ LCP	yes 25	PTA, DSN, VLBI, SETI

FAST sciences

- Neutral Hydrogen line (HI) surveying
- Pulsar research
- Joining VLBI network
- Molecular lines
- Search for Extraterrestrial Intelligence

FAST HI survey

Extent of HI Disk, extended rotation curve to extreme large distance

Cold Dark Matter Satellite (ACDM) HI Mass Function , BAO **Comsmic web** Surveying Milky Way (FV, HVC population, Magellanic Stream ... HI study of high redshift galaxies

HI gas in galaxy clusters and groups

HI absorptions from QSOs/radio sources

Neutral hydrogen (HI) survey

Blind detection of HI galaxies with 3x10^9 M_sun with an interference-free observing period of 1h, z~0.2 But, confusion will be a problem at z>0.4 ... Catinella et al. 2010 found galaxies with M(HI) ~3x 10^10 M_sun

Warm HI shell around AGN, the detection range limit in a moderate integration time, z~2 or 3

Deep integration in the neighborhood of nearby galaxies to the lowest surface density ~10^16 cm^-2

Search for dark galaxies with M(HI) ~10^-5 Msun in the local universe

FAST Pulsar Survey

There are ~ 6 X 10⁴ detectable pulsars in the Galaxy, half is in FAST sky

- Thousands of new pulsars
 Rare objects
 Exotic stars quark matter
 Pulsar-BH binary
- Stellar evolution before SN
 ISM map of unprecedented details

Observing Modes for FAST

- Tracking
- Drift scan
 - Drift and chase
 - Basket-weaving
 - Drift at fixed azimuth or LST
- Position switching
- Freq switching
- Active scan (on the fly mapping)

The four modes of scanning used by GALFA-Hi. In each example, the empty circles represent the initial position of ALFA for a single day's observation and the lled circles represent the nal position of ALFA for the day's observation. In the drift and basketweave diagrams gray lines represent complementary scans taken on other days of observations. In the leap-frog diagram the gray lines represent the return slew of the telescope to the beginning of the right-ascension range to start another xed-azimuth scan.

Major Challenge: Pulsar Survey

- Large-scale surveys generate *a lot of data*
- 19 beams with FAST will be ~120GB per 5min pointing, with 0.1ms sampling rate

(assume 1K channel, if 8K channels, 1TB per 5 minutes)

10hr per day would have 15TB data (120 TB for 8K channels)

Computing power require :more than 200 Tflops

Remote observing

- Op centers: Beijing / Guiyang /FAST Site
 Op in Guiyang, Headquarter/datacenter in Beijing
- Major computer clusters in Guiyang
- Observers want to do remote observing

 transit modes, short observing block
- Need flex scheduling and optimization
 Minimum movements of the dish (costly)
- Surveys dominated
- Need closely monitoring and measurements
- On site operator

Requirements and considerations

- Computers requirements
- Network requirements
- Communication protocols
- Remote assessment, monitoring, notification, and control of subsystems

– which part can be operated remotely?

- Data processing --pipeline
- Data management, storage, transportation, archiving

Observatory control system

FAST model

Summary

- Located at a remote, radio quite site, remote observing with the FAST telescope is highly desirable.
- Active monitoring and autonomous control of individual subsystem are needed.
- Suggestions are welcome!