The Mauna Kea Weather Center:

Custom Atmospheric Forecasting Support for Mauna Kea

Brief History of Weather Center

Memorandum of understanding between UH Meteorology & IfA established the Mauna Kea Weather Center in July 1998.

Three principal objectives:

- (i) Provide weather forecasts and nowcasts for MKO.
- (ii) Determine and meteorological conditions that provide the best astronomical observing conditions.
- (iii) Communicate forecasts, meteorological data, and imagery to observatories.

Goal: To provide forecast products

- relevant to astronomical observing quality &
- to mitigate high impact weather

Forecasts Relevant to Observing Quality

- Telescope mirror temperature
- Telescope wind shake
- Precipitable water
- Cloudiness and Fog
- Seeing and C_{n²}

Weather Hazard Mitigation

Anticipating High Winds and Frozen Precipitation

- Tropical cyclones
- Cold frontal passages
- Upper level troughs/lows
- Strong subtropical highs (strong summit winds)
- Kona lows

Current Status

MKWC forecasts issued twice daily, Monday through Friday Twice Daily Weather Research& Forecast (WRF) model runs Satellite and model graphics provided by web server(s) Comprehensive data archive developed & maintained Experience is accumulating in custom forecasting Research and development are ongoing

mkwc.ifa.hawaii.edu

Two Linux Servers provide

- Data ingest
- Data assimilation and WRF input
- Graphic/Web
- Redundant product distribution
- Archive function

Silicon Mechanics HPC

The MKWC HPC system is comprised of 16 compute nodes, 128 CPUs (Intel Xeon L5420 Quad-Core 2.50GHz), with high-speed communication links between nodes (Infiniband cards and switches). The system includes a RAID-6 storage component.

Key Variables in Twice-Daily MKWC Forecasts

Cloud cover, fog, precipitation Summit winds and temperature Precipitable water Seeing, Cn², and wind profiles

Seeing Page

Fog Statistics

% Fog occurred:		When Not Forecast	Δ%	When Forecast	Δ%
	1	3.9%	0	90.2%	0
	2	4.2%	+0.2	91.7%	0
Night	3	5.3%	-0.1	82.1%	0
	4	6.0%	-0.1	88.9%	0
	5	7.4%	-0.2	71.4%	0

Temperature Statistics

Percent Temp Forecast < 1 °C							
Night All Nights		Δ%	*Good Nights	Δ%	RMS		
1	58.7%	+0.6	74.1%	+0.1	0.96°		
2	50.7%	+0.2	59.8%	+0.8	1.23°		
3	48.8%	-1.2	48.6%	+0.5	1.41°		
4	44.0%	-1.2	44.6%	+0.3	1.65°		
5	41.9%	-1.9	44.0%	+0.7	1.88°		

Subtle changes over the last 6 months

* Defined as: RH < 80%, winds < 50 mph

9

PW Statistics

	Night	1	2	3	4	5
	1 mm	0.15	0.16	0.18	0.20	0.23
PW _{max}	2 mm	0.31	0.37	0.36	0.38	0.39
	4 mm	0.64	0.77	0.81	0.90	0.94

- General increase in RMS with fcst time and PWmax
- Not much change in the last 6 months

Primary Research Challenge: Accurate Seeing Forecasts

To construct prediction of C_n^2 profile need to obtain fine vertical and horizontal resolution forecasts of temperature, wind and turbulence related variables.

Calculate optical turbulence parameters by integrating the C_n^2 profiles

Validate and refine the optical turbulence algorithm

Seeing Statistics

WRF Seeing Verification using MKAM

By eliminating these cases from the dataset: RMS = 0.28 and CORR = 0.7

Seeing Verification using MKAM

Example of a night when WRF prediction underestimated the observed seeing: a temporary increase in the winds in the boundary layer stir up a "bubble" of turbulence that the model does not resolve... perhaps due to lack of spatial or temporal resolution.

July 26/27, 2010 (HST)

Seeing Verification using MKAM

Seeing Verification using MKAM

The dates corresponding to cases of "large" overestimation have all in common the same synoptic scenario:

- Strong large scale subsidence \rightarrow very stable atmosphere
- Strong/tight surface pressure gradients resulting in moderate to high winds at the summit (wind speed > 15-18 mph).

The atmospheric stability does not allow turbulence to develop, therefore good/average seeing is observed.

WRF generates more turbulence than it should as a consequence of the high surface winds \rightarrow skew in the scatterplot.

Seeing Calibration using MKAM

Calibration of the background TKE (E_{min}) is performed for each integral layer (6 MASS layers + 1 GL layer):

Synergy with Meteorology Community

Seeing Calibration using MKAM

Statistics have been run for the two nights of each WRF cycle verifying the MKAM observations. Data are nightly averaged: 8 hours from 8pm to 4am HST.

		Second	calibration	– Jun to Aug	
		00 UTC cycle		12 UTC cycle	
		N1	N2	N1	N2
	RMS	0.33	0.34	0.34	0.35
	CORR	0.62	0.63	0.60	0.60

22

Synergy with Meteorology Community

WRF is a community-supported research and forecast model. NSF and NOAA funding – yearly updates and improvements.

Local Analysis and Prediction System (LAPS) data assimilation application for WRF developed in collaboration with NOAA ESRL.

Unidata provides much of the input data for LAPS/WRF and the web distribution software used by MKWC.

- Satellite derived atmospheric motion vectors (e.g., cloud drift winds) from UW CIMSS.
- COSMIC Satellite Constellation: refractivity data from limbsoundings – National Center for Atmospheric Research
- GPS IPW in collaboration with UH Geophysics and NOAA.
- Calibration and assimilation of lightning data in collaboration with ONR and NASA.

Vog Measurement and Prediction (VMAP) Project

Vog Measurement and Prediction

VMAP project is facilitated by MKWC. See http://mkwc.ifa.hawaii.edu/vmap/index.cgi

Sulfate Aerosol Animation

AWRF METEOROLOGICAL DATA

New Synergy

New Post Doctoral Fellow started this Jan – will tackle a broader WRF verification effort as part of a project to use WRF output in an ecology study funded by an NSF water resources management grant.

NOAA is funding a satellite x-band downlink that will bring NASA and NOAA POES data to UH. Project related to launch of GOES-R satellite in 2016.

- MODIS
- AQUA
- AIRS
- TRMM
- POES
- DMS

MKWC Future Work

Increase spatial and temporal resolution of WRF

 challenge here is to overcome numerical instability due to forcing from terrain at scale of grid resolution.

Implement WRF Variational Data Assimilation

- Increase the skill of conventional and seeing forecasts with help of validation statistics.
- Provide forecast variables with finer temporal and spatial resolution.
- Issue longer-term seeing forecasts.
- Proposal to expand MKWC service to Chile.

Textbook Now Available

Seeing Clearly

Introduction (Businger) 1. Atmospheric Turbulence Authors 1.2 Atmospheric turbulence for astronomy......(Vernin) 2. Instrumentation for Observing Optical Turbulence 2.1 Remote optical turbulence sensing: present and future......(Tokovinin) 3. Adaptive Optics - Interferometry 3.1 Introduction to Adaptive Optics: The Quest for Image Quality......(Tokovinin and Businger) 4. Modeling Optical Turbulence 4.1 The "Missing Link" Between Meteorology and Astronomy......(Simons & Roy) 4.2 Optical Turbulence Modeling and Forecast. Towards a new era for ground-based astrononmy......(Masciadri) 4.3 An operational perspective for modeling optical turbulence......(Cheribini, Businger, and Lyman)

